Дробный факторный эксперимент
Количество опытов в полном факторном эксперименте значительно превосходит число определяемых коэффициентов линейной модели. Другими словами, полный факторный эксперимент обладает большой избыточностью опытов. Было бы заманчивым сократить их число за счет той информации, которая не очень существенна при построении линейных моделей. При этом нужно стремиться, чтобы матрица планирования не лишилась своих оптимальных свойств. Сделать это не так просто, но все же возможно. Итак, начнем поиск путей минимизации опытов.
Минимизация числа опытов
Начнем с самого простого – полного факторного эксперимента 2k. Запишем еще раз матрицу планирования
№ опыта |
x0 |
x1 |
x2 |
(x3) x1x2 |
y |
1 |
+ |
– |
– |
+ |
y1 |
2 |
+ |
+ |
– |
– |
y2 |
3 |
+ |
– |
+ |
– |
y3 |
4 |
+ |
+ |
+ |
+ |
y4 |
Пользуясь таким планированием, можно вычислить четыре коэффициента и представить результаты эксперт в виде неполного квадратного уравнения
Если имеются основания считать, что в выбранных интервалах варьирования процесс может быть описан линейной моделью, то достаточно определить три коэффициента: b0, b1 и b2. Остается одна степень свободы. Употребим ее для минимизации числа опытов. При линейном приближении и вектор-столбец x1x2 можно использовать для нового фактора x3. Поставим этот фактор в скобках над взаимодействием x1x2 и посмотрим, каковы будут оценки коэффициентов. Здесь уже не будет тех раздельных оценок, которые мы имели в полном факторном эксперименте 2k. Оценки смешаются следующим образом:
, , .
Но нас это не должно огорчать. Ведь мы постулируем линейную модель, и, следовательно, все парные взаимодействия незначимы. Главное, мы нашли средство минимизировать число опытов: вместо 8 опытов для изучения трех факторов оказывается можно поставить четыре! При этом матрица планирования не теряет своих оптимальных свойств (ортогональность, ротатабельность и т.п.). Найденное правило можно сформулировать так: чтобы сократить число опытов, нужно новому фактору присвоить вектор-столбец матрицы, принадлежащий взаимодействию, которым можно пренебречь. Тогда значение нового фактора в условиях опытов определяется знаками этого столбца.
Дробная реплика
Поставив четыре опыта для оценки влияния трех факторов, мы воспользовались половиной полного факторного эксперимента 23 или «полурепликой». Если бы мы х3 приравняли к –x1x2, то получили бы вторую половину матрицы 23. В этом случае , , . При реализации обеих полуреплик можно получить раздельные оценки для линейных эффектов и эффектов взаимодействия, как и в полном факторном эксперименте 23. Объединение этих двух полуреплик и есть полный факторный эксперимент 23. Матрица из восьми опытов для четырех факторного планирования будет полурепликой от полного факторного эксперимента 24, а для пятифакторного планирования – четверть-репликой от 25. В последнем случае два линейных эффекта приравниваются к эффектам взаимодействия. Для обозначения дробных реплик, в которых p линейных эффектов приравнены к эффектам взаимодействия, удобно пользоваться условным обозначением 2k-p. Так, полуреплика от 23 запишется в виде 23-1 а четвертьреплика от 25 – в виде 25-2.
Выбор полуреплик. Генерирующие соотношения и определяющие контрасты
При построении полуреплики 23-1 существует всего две возможности: приравнять х3 к +x1x2 или к –x1x2. Поэтому есть только две полуреплики 23-1.
№ опыта |
x1 |
x2 |
x3 |
x1x2x3 |
1 |
+ |
+ |
+ |
+ |
2 |
– |
– |
+ |
+ |
3 |
+ |
– |
– |
+ |
4 |
– |
+ |
– |
+ |
№ опыта |
x1 |
x2 |
x3 |
x1x2x3 |
1 |
+ |
+ |
– |
– |
2 |
– |
– |
– |
– |
3 |
+ |
– |
+ |
– |
4 |
– |
+ |
+ |
– |
Для произведения трех столбцов первой матрицы выполняется соотношение: , а для второй матрицы: .
Символическое обозначение произведения столбцов, равного +1 или –1, называется определяющим контрастом. Контраст помогает определять смешанные эффекты. Для того чтобы определить, какой эффект смешан с данным, нужно помножить обе части определяющего контраста на столбец, соответствующий данному эффекту. Так, если , то для x1 имеем
,
так как всегда . Для x2 находим
,
для x3
.
Это значит, что коэффициенты линейного уравнения будут оценками
,
,
.
Соотношение, показывающее, с каким из эффектов смешан данный эффект, называется генерирующим соотношением.
Полуреплики, в которых основные эффекты смешаны с двухфакторными взаимодействиями, носят название планов с разрешающей способностью III (по наибольшему числу факторов в определяющем контрасте).Такие планы принято обозначать: .
При выборе полуреплики 24-1 возможны восемь решений:
1. ,
2. ,
3. ,
4. ,
5. ,
6. ,
7. ,
8. .
Разрешающая способность этих полуреплик различна. Так, реплики 1–6 имеют по три фактора в определяющем контрасте, а 7–8 по четыре. Реплики 7 и 8 имеют максимальную разрешающую способность и называются главными. Разрешающая способность задается системой смешивания данной реплики. Она будет максимальной, если линейные эффекты смешаны с эффектами взаимодействия наибольшего возможного порядка.
При отсутствии априорной информации об эффектах взаимодействия экспериментатор стремится выбрать реплику с наибольшей разрешающей способностью, так как тройные взаимодействия обычно менее важны, чем парные. Если существует информация об эффектах взаимодействия, то она должна использоваться при выборе реплики.
Реплики, в которых нет ни одного главного эффекта, смешанного с другим главным эффектом или парным взаимодействием, а все парные взаимодействия смешаны друг с другом, носят название планов с разрешающей способностью IV (по наибольшему числу факторов в определяющем контрасте). Они имеют обозначение .
Такие полуреплики называют главными полурепликами, так как они обладают наибольшей разрешающей способностью.
При выборе полуреплики 25-1 в распоряжении экспериментатора имеется множество вариантов.
Так, х5 можно приравнять к одному из 6 парных взаимодействий. В этом случае получим полуреплику с разрешающей способностью III. Очевидно, это будет не лучший выбор полуреплики. Далее, х5 можно приравнять к одному из четырех тройных взаимодействий. Тогда получим план с разрешающей способностью IV, и все линейные эффекты будут смешаны с тройными взаимодействиями. И наконец, полуреплика может быть задана генерирующими соотношениями или . Определяющими контрастами в этом случае будут.
и .
Такие реплики носят название планов с разрешающей способностью V и обозначаются .
Полурепликами 26-1 редко пользуются на практике. Ведь полуреплика 26-1 требует 32 опыта, а для экспериментатора выгодны планы 26-2 или 26-3 требующие соответственно 16 и 8 опытов. Поэтому с ростом числа факторов возрастает дробность применяемых реплик.
Заметим, что при построении главных полуреплик в определяющий контраст надо включать наибольшее число факторов.
Выбор 1/4-реплик. Обобщающий определяющий контраст.
При исследовании влияния пяти факторов можно поставить не 16 опытов, а только 8, т. е. воспользоваться репликой 25-2. Здесь возможны двенадцать решений, если х4 приравнять парному взаимодействию, а х5 – тройному. Допустим, выбран вариант и . Тогда определяющими контрастами являются и .
Если перемножить эти определяющие контрасты, то получится третье соотношение, задающее элементы столбца . Чтобы полностью охарактеризовать разрешающую способность реплики, необходимо записать обобщающий определяющий контраст.
.
Система смешивания определяется умножением обобщающего определяющего контраста последовательно на х1, х2, х3 и т.д.
,
,
,
,
,
,
.
Получается довольно сложная система смешивания линейных эффектов с эффектами взаимодействия первого, второго, третьего и четвертого порядков. Если, например, коэффициенты и отличаются от нуля, то возникают сомнения, можно ли пренебрегать другими парными взаимодействиями, с которыми смешаны линейные эффекты. Тогда следует поставить вторую серию опытов, выбрав нужным образом другую 1/4-реплику.
При этом можно воспользоваться методом «перевала». Смысл этого метода заключается в том, что вторая четверть-реплика получается из первой путем изменения всех знаков матрицы на обратные. Тогда в обобщающей определяющем контрасте тройные произведения имеют знак, противоположный их знаку в первой четверть-реплике. Тройные произведения определяют парные взаимодействия в совместных оценках для линейных эффектов. Усредняя результаты обеих четверть-реплик, можно получить линейные эффекты, не смешанные с парными взаимодействиями.
Реплики большой дробности
При выборе 1/8-реплики 26-3 можно воспользоваться вектор-столбцами трех взаимодействий, например, так:
1. , , ;
2. , , ;
3. , , ;
4. , , .
Для каждого из этих решений можно сделать шесть перестановок. Итого получается 24 возможности выбора 1/8-реплики. Это при условии, что мы всюду выбираем положительные генерирующие соотношения.
Из четырех приведенных выше решений наименее удачно первое, поскольку все линейные эффекты смешиваются с парными взаимодействиями. Если априори известно, что из всех взаимодействий наиболее существенно х1х2, то нужно выбрать второе решение, если х1х3 – третье, а если х2х3 – четвертое.
Допустим, мы избрали четвертое решение, предполагая, что из факторов х4, х5, х6 наиболее существенным является х4. Приравняем х4 тройному взаимодействию и запишем генерирующие соотношения
, , .
имеем следующие определяющие контрасты:
, , .
Если попарно перемножить эти определяющие контрасты, то получим
, , .
Произведение трех определяющих контрастов равно
.
Чтобы полностью охарактеризовать разрешающую способность данной 1/8-реплики, запишем обобщающий определяющий контраст
.
Получается следующая система смешивания (эффекты выше второго порядка опущены):
,
,
,
,
,
.
Рассмотрим пример 1/16-реплики от 27.
1/16 часть от полного факторного эксперимента 27 дает возможность сократить число опытов до 8 вместо 128.
Выберем следующие генерирующие соотношения:
, , , .
Для них имеем следующие определяющие контрасты:
, , , .
Обобщающий определяющий контраст
Такой обобщающий определяющий контраст получен в результате попарного перемножения исходных контрастов, затем – умножения по три и по четыре.
Если всеми коэффициентами взаимодействия, начиная с тройных, можно пренебречь, то коэффициенты будут совместными оценками:
,
,
,
,
,
,
.
Разрешающая способность такой реплики чрезвычайно мала, так как каждый линейный эффект определяется совместно с тремя парными взаимодействиями. Такой репликой можно пользоваться только в том случае, если все парные взаимодействия равны нулю. В большинстве случаев, начиная исследование процесса, трудно априорно предсказать, будут эффекты взаимодействия существенны или нет. Поэтому экспериментатор должен наметить план дальнейших опытов для случая, если парные эффекты значимы и поиск оптимальных условий будет неэффективным.
Матрицу планирования для этой реплики можно получить из первой реплики, изменив в ней все знаки на обратные. Такая реплика задается генерирующими соотношениями
, , , .
В обобщающем определяющем контрасте все тройные произведения оказываются со знаком минус, и поэтому в совместных оценках для линейных эффектов не будет парных взаимодействий со знаком плюс. Усредняя результаты вычислений для таких двух реплик, можно получить раздельные оценки для всех линейных эффектов.
С ростом числа факторов увеличивается дробность реплик и усложняется система смешивания. Предельное число факторов для восьми опытов – семь. В этом случае оценивается восемь коэффициентов линейного уравнения и число степеней свободы равно нулю. При числе факторов от 9 до 15 приходится ставить 16 опытов. План с предельным числом факторов для данного числа опытов и заданной модели называется насыщенным. В этом случае число опытов равно числу оцениваемых коэффициентов. Все рекомендации для выбора системы смешивания аналогичны приведенным выше. Можно, далее, рассматривать построение дробных планов для числа факторов от 16 до 31 (при этом необходимо ставить 32 опыта), для числа факторов от 32 до 63 (здесь необходимы 64 опыта) и т. д.