Выбор модели
Под моделью мы понимаем функцию отклика
Выбрать модель – значит выбрать вид этой функции, записать ее уравнение. Тогда останется спланировать и провести эксперимент для оценки численных значений констант (коэффициентов) этого уравнения.
Построим геометрический аналог функции отклика – поверхность отклика. Будем для наглядности рассматривать случай с двумя факторами.
Заметим, что в случае многих факторов геометрическая наглядность теряется. Мы попадаем в абстрактное многомерное пространство, где у нас нет навыка ориентирования. Приходится переходить на язык алгебры.
Мы хотим изобразить геометрически возможные состояния «черного ящика» с двумя входами. Для этого достаточно располагать плоскостью с обычной Декартовой системой координат. По одной оси координат будем откладывать в некотором масштабе значения (уровни) одного фактора, а по другой оси – второго. Тогда каждому состоянию «ящика» будет соответствовать точка на плоскости.
Для факторов существуют области определения. Это значит, что у каждого фактора есть минимальное и максимальное возможные значения, между которыми он может изменяться либо непрерывно, либо дискретно. Если факторы совместимы, то границы образуют на плоскости некоторый прямоугольник, внутри которого лежат точки, соответствующие состояниям «черного ящика». Пунктирными линиями на рисунке обозначены границы областей определения каждою из факторов, а сплошными – границы их совместной области определения.
Чтобы указать значение параметра оптимизации, требуется еще одна ось координат. Пространство, в котором строится поверхность отклика, мы будем называть факторным пространством. Оно задается координатными осями, по которым откладываются значения факторов и параметра оптимизации. Размерность факторного пространства зависит от числа факторов. При многих факторах поверхность отклика уже нельзя изобразить наглядно и приходится ограничиваться только алгебраическим языком.
Но для двух факторов можно даже не переходить к трехмерному пространству, а ограничиться плоскостью.
Для этого достаточно произвести сечение поверхности отклика плоскостями, параллельными плоскости X1OX2 и полученные в сечениях линии спроектировать на эту плоскость.
Каждая линия соответствует постоянному значению параметра оптимизации. Такая линия называется линией равного отклика.
Шаговый принцип
За отказ от полного перебора состояний надо чем-то платить. Цена – это предположения, которые мы должны сделать относительно свойств неизвестной нам модели до начала эксперимента.
Главное предположение – это непрерывность поверхности, ее гладкость и наличие единственного оптимума (быть может, и на границе области определения факторов).
Эти постулаты позволяют представить изучаемую функцию в виде степенного ряда в окрестности любой возможной точки факторного пространства (такие функции в математике называются аналитическими). Кроме того, если мы придумаем какой-то способ постепенного приближения к оптимальной точке, нужно, чтобы результат не зависел от исходной точки.
Так как мы заранее считаем, что предпосылки выполняются, то надо максимально использовать возможности, которые при этом открываются.
Если, например, мы будем знать значения параметра оптимизации в нескольких соседних точках факторного пространства, мы сможем (в силу гладкости и непрерывности функции отклика) представить себе результаты, которые можно ожидать в других соседних точках. Следовательно, можно найти такие точки, для которых ожидается наибольшее увеличение (или уменьшение, если мы ищем минимум) параметра оптимизации. Тогда ясно, что следующий эксперимент надо переносить именно в эти точки. Надо продвигаться в этом направлении, пренебрегая остальными. Сделав новый эксперимент, снова можно оценить направление, в котором следует двигаться. В силу единственности оптимума мы, таким образом, рано или поздно непременно его достигнем. Это и есть шаговый принцип.
Сделаем некоторые пояснения. Мы выбираем в факторном пространстве какую-то точку и рассматриваем множество точек в ее окрестности, т. е. выбираем в области определения факторов малую подобласть. Здесь мы хотим провести эксперимент, на основании которого должна быть построена первая модель. Эту модель мы намерены использовать для предсказания результатов опытов в тех точках, которые не входили в эксперимент. Если эти точки лежат внутри нашей подобласти, то такое предсказание называется интерполяцией, а если вне – экстраполяцией. Чем дальше от области эксперимента лежит точка, для которой мы хотим предсказать результат, теме меньшей уверенностью это можно делать. Поэтому мы вынуждены экстраполировать недалеко и использовать результаты экстраполяции для выбора условий проведения следующего эксперимента. Дальше цикл повторяется.
Попутно полученную модель можно использовать для проверки различных гипотез о механизме изучаемого явления или о его отдельных сторонах. Например, если вы предполагаете, что увеличение значения некоторого фактора должно приводить к увеличению значения параметра оптимизации, то с помощью модели можно узнать, так ли это. Такая проверка называется интерпретацией мидели.
Как выбрать модель?
Исходя из выбранной стратегии, ясно, что главное требование к модели – это способность предсказывать направление дальнейших опытов, причем предсказывать с требуемой точностью. Так как до получения модели мы не знаем, какое направление нам понадобится, то естественно требовать, чтобы точность предсказания во всех возможных направлениях была одинакова.
Это значит, что в некоторой подобласти, в которую входят и координаты выполненных опытов, предсказанное с помощью модели значение отклика не должно отличаться от фактического больше чем на некоторую заранее заданную величину. Модель, которая удовлетворяет такому или какому-либо аналогичному требованию, называется адекватной. Проверка выполнимости этого требования называется проверкой адекватности модели. Методы, с помощью которых проверяется адекватность, рассматриваются далее.
Если несколько различных моделей отвечают нужным требованиям, то следует предпочесть ту из них, которая является самой простой.
На будущее мы договоримся, что при прочих равных условиях мы всегда будем предпочитать степенные ряды. Точнее, отрезки степенных рядов – алгебраические полиномы.
Фактически мы произвели выбор класса моделей. Мы сказали, что всегда, когда это возможно, будем искать модель среди полиномов. Построение полинома возможно в окрестностях любой точки факторного пространства, поскольку мы предположили, что функция является аналитической.
Полиномиальные модели
Мы представили неизвестную нам функцию отклика полиномом. Операция замены одной функции другой в каком-то смысле эквивалентной функцией называется аппроксимацией. Значит, ми аппроксимировали неизвестную функцию полиномом.
Но полиномы бывают разных степеней. Какой взять на первом шаге?
Эксперимент нужен только для того, чтобы найти численные значения коэффициентов полинома. Поэтому чем больше коэффициентов, тем больше опытов окажется необходимым. А мы стремимся сократить их число. Значит, надо найти такой полином, который содержит как можно меньше коэффициентов, но удовлетворяет требованиям, предъявленным к модели. Чем ниже степень полинома при заданном числе факторов, тем меньше в нем коэффициентов.
Мы хотим, чтобы модель хорошо предсказывала направление наискорейшего улучшения параметра оптимизации. Такое направление называется направлением градиента. Ясно, что движение в этом направлении приведет к успеху быстрее, чем движение в любом другом направлении (это значит, что будет достигнута экономия числа опытов).
Полином первой степени – линейная модель – это то, что нам нужно.
С одной стороны, он содержит информацию о направлении градиента, с другой – в нем минимально возможное число коэффициентов при данном числе факторов. Единственное опасение в том, что неясно, будет ли линейная модель всегда адекватной. Ответ зависит еще и от объекта.
Вопрос в том, как выбрать подобласть в факторном пространстве, чтобы линейная модель оказалась адекватной. Условие аналитичности функции отклика гарантирует нам эту возможность. Всегда существует такая окрестность любой точки (точнее, почти любой точки), в которой линейная модель адекватна.
Размер такой области заранее не известен, но адекватность можно проверять по результатам эксперимента. Значит, выбрав сначала произвольную подобласть, мы, рано или поздно, найдем ее требуемые размеры, И как только это случится, воспользуемся движением по градиенту.
На следующем этапе мы будем искать линейную модель уже в другой подобласти. Цикл повторяется до тех пор, пока движение по градиенту не перестанет давать эффект. Это значит, что мы попали и область, близкую к оптимуму. Такая область называется «почти стационарной». Здесь линейная модель уже не нужна. Либо попаданием в почти стационарную область задача решена, либо надо переходить к полиномам более высоких степеней, например второй степени, чтобы подробнее описать область оптимума.
Удачный выбор подобласти имеет большое значение для успеха всей работы. Он связан с интуитивными решениями, которые принимает экспериментатор на каждом этапе.
Кроме задачи оптимизации, иногда возникает задача построения интерполяционной модели. В этом случае нас не интересует оптимум. Просто мы хотим предсказывать результат с требуемой точностью во всех точках некоторой заранее заданной области. Тут не приходится выбирать подобласть. Необходимо последовательно увеличивать степень полинома до тех пор, пока модель не окажется адекватной. Если адекватной оказывается линейная, или неполная квадратная модель (без членов, содержащих квадраты факторов), то ее построение аналогично тому, что требуется для оптимизации.