Принятие решений после построения модели
Интерпретация результатов
Адекватная линейная модель, имеет вид полинома первой степени. Коэффициенты полинома являются частными производными функции отклика по соответствующим переменным. Их геометрический смысл – тангенсы углов наклона гиперплоскости к соответствующей оси. Больший по абсолютной величине коэффициент соответствует большему углу наклона и, следовательно, более существенному изменению параметра оптимизации при изменении данного фактора.
До сих пор мы употребляли абстрактный математический язык. Перевод модели на язык экспериментатора называется интерпретацией модели.
Задача интерпретации весьма сложна. Ее решают в несколько этапов. Первый этап состоит в следующем. Устанавливается, в какой мере каждый из факторов влияет на параметр оптимизации. Величина коэффициента регрессии – количественная мера этого влияния. Чем больше коэффициент, тем сильнее влияет фактор. О характере влияния факторов говорят знаки коэффициентов. Знак плюс свидетельствует о том, что с увеличением значения фактора растет величина параметра оптимизации, а при знаке минус – убывает. Интерпретация знаков при оптимизации зависит от того, ищем ли мы максимум или минимум функции отклика. Если , то увеличение значений всех факторов, коэффициенты которых имеют знак плюс, благоприятно, а имеющих знак минус – неблагоприятно. Если же то, наоборот, благоприятно увеличение значений тех факторов, знаки коэффициентов которых отрицательны.
Далее выясняется, как расположить совокупность факторов в ряд по силе их влияния на параметр оптимизации. Факторы, коэффициенты которых не значимы, конечно не интерпретируются. Можно сказать только, что при данных интервалах варьирования и ошибке воспроизводимости они не оказывают существенного влияния на параметр оптимизации.
Изменение интервалов варьирования приводит к изменению коэффициентов регрессии. Абсолютные величины коэффициентов регрессии увеличиваются с увеличением интервалов. Инвариантными к изменению интервалов остаются знаки линейных коэффициентов регрессии. Однако и они изменяться на обратные, если при движении но градиенту мы «проскочим» экстремум.
В некоторых задачах представляет интерес построение уравнения регрессии для натуральных значений факторов. Уравнение для натуральных переменных можно получить, используя формулу перехода. Коэффициенты регрессии изменятся. При этом пропадает возможность интерпретации влияния факторов по величинам и знакам коэффициентов регрессии. Вектор-столбцы натуральных значений переменных в матрице планирования уже не будут ортогональными, коэффициенты определяются зависимо друг от друга. Если же поставлена задача получения интерполяционной формулы для натуральных переменных, такой прием допустим.
Теперь мы получили основу для перехода к следующему этапу. На основе априорных сведений обычно имеются некоторые представления о характере действия факторов. Источниками таких сведений могут служить теория изучаемого процесса, опыт работы с аналогичными процессами или предварительные опыты и т.д.
Если, например, ожидается, что с ростом температуры должно происходить увеличение параметра оптимизации, а коэффициент регрессии имеет знак минус, то возникает противоречие. Возможны две причины возникновения такой ситуации: либо в эксперименте допущена ошибка, и он должен быть подвергнут ревизии, либо неверны априорные представления. Нужно иметь в виду, что эксперимент проводится в локальной области факторного пространства и коэффициент отражает влияние фактора только в этой области. Заранее неизвестно, в какой мере наивно распространить результат на другие области. Теоретические же представления имеют обычно более общий характер. Кроме того, априорная информация часто основывается на однофакторных зависимостях. При переходе к многофакторному пространству ситуация может изменяться. Поэтому мы должны быть уверены, что эксперимент проведен корректно. Тогда для преодоления противоречия можно выдвигать различные гипотезы и проверять их экспериментально.
В тех, довольно редких, случаях, когда имеется большая априорная информация, позволяющая выдвигать гипотезы о механизме явлений, можно перейти к следующему этапу интерпретации. Он сводится к проверке гипотез о механизме явлений и выдвижению новых гипотез.
Получение информации о механизме явлений не является обязательным в задачах оптимизации, но возможность такого рода следует использовать. Здесь особое внимание приходится уделять эффектам взаимодействия факторов. Как их интерпретировать?
Пусть в некоторой задаче взаимодействие двух факторов значимо и имеет положительный знак. Это свидетельствует о том, что одновременное увеличение, как и одновременное уменьшение, значений двух факторов приводит к увеличению параметра оптимизации (без учета линейных эффектов).
Интерпретация эффектов взаимодействия не так однозначна, как линейных эффектов. В каждом случае имеется дна варианта. Какому из вариантов отдавить предпочтение? Прежде всего, нужно учесть знаки линейных эффектов соответствующих факторов. Если эффект взаимодействия имеет знак плюс и соответствующие линейные эффекты отрицательны, то выбор однозначен: сочетание –1 и –1. Однако возможен случай, когда знаки линейных эффектов различны. Тогда приходится учитывать численные значения коэффициентов и жертвовать самым малым эффектом.
Иногда приходится учитывать технологические соображения: например, эксперимент в одной области факторного пространства дороже (или труднее), чем в другой.
Упомянем еще об интерпретации эффектов взаимодействия высоких порядков. Если значимым оказался эффект взаимодействия трех факторов, например , то его можно интерпретировать следующим образом. Этот эффект может иметь знак плюс, если отрицательные знаки будут у четного числа факторов (ноль или любые два). Знак минус будет, если нечетное число факторов имеет знак минус (все три или любой один). Это правило распространяется на взаимодействия любых порядков. Пользуются еще таким приемом: произведение двух факторов условно считают одним фактором и сводят трехфакторное взаимодействие к парному и т.д.
Мы сказали, что интерпретация результатов – это перевод с одного языка на другой. Такой перевод обеспечивает взаимопонимание между статистиком и экспериментатором, работающим совместно над задачами оптимизации. Интерпретация уравнения регрессии важна не только для понимания процесса, но и для принятия решений при оптимизации.
Принятие решений после построения модели процесса
Нам придется принимать решения в сложных ситуациях. Решения зависят от числа факторов, дробности плана, цели исследования (достижение оптимума, построение интерполяционной формулы) и т.д. Количество возможных решений по примерной оценке достигает нескольких десятков тысяч. Поэтому будем рассматривать только наиболее часто встречавшиеся случаи и выделим «типичные» решения. Положение здесь сложнее, чем в случае принятия решений о выборе основного уровня и интервалов варьирования факторов, где удалось рассмотреть все варианты. Ситуации будем различать по адекватности и неадекватности модели, значимости и незначимости коэффициентов регрессии в модели, информации о положении оптимума.
Обсудим сначала принятие решения для адекватного линейного уравнения регрессии.
Линейная модель адекватна. Здесь возможны 3 варианта.
1. Все коэффициенты регрессии значимы.
2. Часть коэффициентов регрессии значима, часть незначима.
3. Все коэффициенты регрессии незначимы.
В каждом варианте оптимум может быть близко, далеко или о его положении нет информации (неопределенная ситуация).
Рассмотрим первый вариант.
Если область оптимума близка, возможны три решения: окончание исследования, переход к планам второго порядка и движение по градиенту.
Переход к планированию второго порядка дает возможность получить математическое описание области оптимума и найти экстремум.
Движение по градиенту используется при малой ошибке опыта, поскольку на фоне большой ошибки трудно установить приращение параметра оптимизации.
Решение при неопределенной ситуации или удаленной области оптимума одно и то же: движение по градиенту.
Второй вариант – часть коэффициентов регрессии значима, часть незначима. Движение по градиенту наиболее эффективно, если коэффициенты значимы. Поэтому выбираются решения, реализация которых приводит к получению значимых коэффициентов. На этом этапе важно выдвинуть гипотезы, объясняющие незначимость эффектов. Это может быть и неудачный выбор интервалов варьирования, и включение (из осторожности) факторов, не влияющих на параметр оптимизации, и большая ошибка опыта, и т.д. Решение зависит от того, какую гипотезу мы предпочитаем.
Если, например, выдвинута первая гипотеза, то возможно такое решение: расширение интервалов варьирования по незначимым факторам и постановка новой серии опытов. Изменение интервалов варьирования иногда сочетают с переносом центра эксперимента в точку, соответствующую условиям наилучшего опыта. Невлияющие факторы стабилизируются и исключаются из дальнейшего рассмотрения. Другие возможные решения для получения значимых коэффициентов: увеличение числа параллельных опытов и достройка плана. Увеличение числа параллельных опытов приводит к уменьшению дисперсии воспроизводимости и соответственно дисперсии коэффициентов регрессии. Опыты могут быть повторены либо во всех точках плана, либо в некоторых.
Достройка плана осуществляется несколькими способами.
1. Методом «перевала» – у исходной реплики изменяют знаки на обратные. В этом случае основные эффекты оказываются не смешанными с парными эффектами
2. Переходом к полному факторному эксперименту.
3. Переходом к реплике меньшей дробности.
4. Переходом к плану второго порядка (если область оптимума близка).
Реализация любого из этих решений требует значительных экспериментальных усилий. Поэтому иногда можно и не следовать строго правилу «двигайтесь по всем факторам», а пойти на некоторый риск и двигаться только по значимым факторам.
Наконец, если область оптимума близка, то возможно принятие таких же решений, как и в случае значимости всех коэффициентов регрессии.
Рассмотрим последний случай: линейная модель адекватна, все коэффициенты регрессии незначимы (кроме b0). Чаще всего это происходит вследствие большой ошибки эксперимента или узких интервалов варьирования. Поэтому возможные решения направлены, прежде всего, на увеличение точности эксперимента и расширение интервалов варьирования. Увеличение точности может достигаться двумя путями: благодаря улучшению методики проведения опытов или вследствие постановки параллельных опытов.
Если область оптимума близка, то возможно также окончание исследования.
В заключение приведем блок-схему принятия решения в задаче определения оптимальных условий, линейная модель адекватна. В блок-схеме пунктирными линиями обведены ситуации, сплошными линиями – принимаемые решения.
Рисунок 6
Линейная модель неадекватна. Если линейная модель неадекватна, значит не удается аппроксимировать поверхность отклика плоскостью. Формальные признаки (кроме величины F-критерия), по которым можно установить неадекватность линейной модели, следующие.
1.Значимость хотя бы одного из эффектов взаимодействия.
2.Значимость суммы коэффициентов регрессии
при квадратичных членах . Оценкой этой суммы служит разность между b0 и значением
зависимой переменной в
центре плана y0. Если разность превосходит ошибку опыта, то гипотеза о
незначимости коэффициентов при квадратичных членах не может быть принята. Однако
надо
учесть, что сумма может быть незначима, и при значимых квадратичных эффектах,
если они имеют разные знаки.
Для неадекватной модели мы не будем делать различия между случаями значимых и незначимых линейных коэффициентов регрессии, поскольку решения для них обычно совпадают.
Решения, принимаемые для получения адекватной модели: изменение интервалов варьирования факторов, перенос центра плана, достройка плана.
Наиболее распространенный прием – изменение интервалов варьирования. Он, конечно, требует постановки новой серии опытов. Иногда отказываются от построения адекватной модели, чтобы ценой нескольких опытов проверить возможность движения по градиенту. Это решение нельзя считать достаточно корректным. Движению по градиенту обычно предшествует оценка кривизны поверхности отклика (по сумме коэффициентов при квадратичных членах) и сопоставление величин линейных эффектов и эффектов взаимодействия. Если вклад квадратичных членов и эффектов взаимодействия невелик, то решение о движении по градиенту представляется возможным.
Еще одно решение: включение в модель эффектов взаимодействия и движение с помощью неполного полинома второго порядка. Этот прием связан с получением и анализом уравнений второго порядка. Направление градиента будет меняться от точки к точке.
Если область оптимума близка,
то возможны варианты окончания исследования и
перехода к построению плана второго порядка.
На рис. 7 приведена блок-схема принятия решений в задаче оптимизации для случая, когда линейная модель неадекватна.
Особый случай возникает при использовании насыщенных планов. При значимости всех коэффициентов регрессии ничего нельзя сказать об адекватности или неадекватности модели. Движение по градиенту в такой ситуации показывает правильность предположения, что коэффициенты регрессии являются оценками для линейных эффектов.
Рисунок 7
Построение интерполяционной формулы, линейная модель неадекватна
Первое, что следует сделать ври решении этой задачи, – включить в уравнение эффекты взаимодействия. Конечно, такое решение возможно, если был применен ненасыщенный план. После добавления эффектов взаимодействия может не хватить степеней свободы для проверки гипотезы адекватности и потребуется реализация ещё двух-трех опытов внутри области эксперимента.
Все остальные способы построения интерполяционной формулы связаны с необходимостью проведения новых опытов. Один из них – достройка плана. Используются все те же приемы, что и при устранении незначимости коэффициентов регрессии: метод «перевала», достройка до полного факторного эксперимента, до дробной реплики, для которой ранее смешанные эффекты становятся «чистыми», достройка до плана второго порядка.
Наконец, если не удалось все же получить адекватную модель, то остается разбить область эксперимента на несколько подобластей и описать отдельно каждую из них. Это требует уменьшения интервалов варьирования факторов.
Приведем блок-схему принятия решений в задаче построения интерполяционной формулы для случая, когда лилейная модель неадекватна. Если линейная модель адекватна, то задача решена.
Рисунок 8