Главная

Оглавление

Ограничения

Основные определения

Объект исследования

Параметр оптимизации

Виды параметров оптимизации

Требования к параметру оптимизации

Факторы

Определение фактора

Требования, предъявляемые к факторам при планировании эксперимента

Требования к совокупности факторов

Выбор модели

Шаговый принцип

Как выбрать модель?

Полиномиальные модели

Полный факторный эксперимент

Принятие решений перед планированием эксперимента

Выбор основного уровня

Выбор интервалов варьирования.

Полный факторный эксперимент

Свойства полного факторного эксперимента типа 2k

Полный факторный эксперимент и математическая модель

Дробный факторный эксперимент

Минимизация числа опытов

Дробная реплика

Выбор полуреплик. Генерирующие соотношения и определяющие контрасты..

Выбор 1/4-реплик. Обобщающий определяющий контраст.

Реплики большой дробности

Проведение эксперимента

Ошибки параллельных опытов

Дисперсия параметра оптимизации

Проверка однородности дисперсий

Рандомизация

Разбиение матрицы типа 2k на блоки

Обработка результатов эксперимента

Метод наименьших квадратов

Регрессионный анализ

Проверка адекватности модели

Проверка значимости коэффициентов

Принятие решений после построения модели

Интерпретация результатов

Принятие решений после построения модели процесса

Построение интерполяционной формулы, линейная модель неадекватна

Крутое восхождение по поверхности отклика

Движение по градиенту

Расчет крутого восхождения

Реализация мысленных опытов

Принятие решений после крутого восхождения

Крутое восхождение эффективно

Крутое восхождение неэффективно


Дополнительные материалы

Глава 1

Глава 2

Глава 3

Глава 4

 

Крутое восхождение по поверхности отклика

 

Движение по градиенту

 

Наиболее короткий путь к оптимуму – направление градиента функции отклика. Градиент непрерывной однозначной функции  есть вектор

,

где  – обозначение градиента,  – частная производная функции по i-му фактору, i, j, k – единичные векторы в направлении координатных осей.

Следовательно, составляющие градиента суть частные производные функции отклика, оценками которых являются, коэффициенты регрессии.

Изменяя независимые переменные пропорционально величинам коэффициентов регрессии, мы будем двигаться в направлении градиента функции отклика по самому крутому пути. Поэтому процедура движения к почти стационарной области называется крутым восхождением.

Величины составляющих градиента определяются формой поверхности отклика и теми решениями, которые были приняты при выборе параметра оптимизации, нулевой точки и интервалов варьирования. Знак составляющих градиента зависит только от формы поверхности отклика и положения нулевой точки.

Расчет крутого восхождения

 

Возникает вопрос: а как выбрать шаг движения по градиенту? Это еще один этап, для которого не сущест­вует формализованного решения. Небольшой шаг потре­бует значительного числа опытов при движении к оптимуму, большой шаг увеличивает вероятность проскока области оптимума. Во всяком случае, аналогично выбору интер­валов варьирования, нижняя граница задается возможностью фиксирования двух соседних опытов, а верхняя областью определения фактора. Для облегчения ра­боты шаги обычно округляют.

На расчет градиента не оказывает влияние b0. Для качественных факторов на двух уровнях либо фиксируется лучший уровень, либо градиент реализуется дважды для каждого уровня в отдельности. Незначимые факторы стабилизируются на любом уровне в интервале ±1. Если нет специальных соображений, то выбирают нулевой уровень. Если же по экономическим соображениям, например, вы­годно поддерживать нижний уровень, то выбирают его. В движении по градиенту эти факторы не участвуют.

Таким образом, расчет сводится к тому, чтобы выбрать шаг движения по одному из факторов и пропорционально произведениям коэффициентов регрессии на интервалы варьирования рассчитать шаги по другим факторам.

Остались не рассмотренными два момента: как влияют на крутое восхождение соотношения численных значений коэффициентов регрессии и почему движение по градиенту начинается из нулевой точки.

Представим себе, что в адекватном линейном уравнении значим только один коэффициент. Тогда в движении по градиенту будет участвовать только один фактор. Многофакторная задача выродится в однофакторную. А это менее эффективно. Рассмотренный случай является крайним, но в практике довольно часто b-коэффициенты существенно различаются между собой, оставаясь значимыми.

Функция, величины коэффициентов которой различаются не существенно, называется симметричной относительно коэффициентов. Движение по градиенту для симметричной функции наиболее эффективно. Удачным выбором интервалов варьирования можно сделать симметричной любую линейную функцию для значимых факторов.

На первом этапе планирования не всегда удается получить симметричную функцию. Если функция резко асимметрична (коэффициенты различаются на порядок), то выгоднее вновь поставить эксперимент, изменив интервалы варьирования, а не двигаться по градиенту.

Реализация мысленных опытов

 

Рассчитав составляющие градиента, мы получили усло­вия мысленных опытов. Число мысленных опытов зависит от задачи. Ограничением сверху служит граница области определения хотя бы по одному из факторов. Иногда по технологическим соображениям нет смысла определять условия многих опытов. Обычно рассчитывается 5–10 мыс­ленных опытов.

Как реализовать мысленные опыты? Нужно ли ставить все опыты подряд или только некоторые из них? С какого опыта начинать? Если модель адекватна, то начи­нают реализацию с тех опытов, условия которых выходят за область эксперимента хотя бы по одному из факторов. Для неадекватной модели часто 1–2 опыта выполняют в области эксперимента.

Условия мысленных опытов следует тщательно обду­мать и убедиться, что нет затруднений в их реализации. Если что-то не ладится, можно изменить шаг и рассчитать мысленные опыты заново.

Существует две принципиально различные стратегии реализации мысленных опытов. Все намеченные к реали­зации опыты ставятся одновременно либо последовательно по некоторой программе. Одновременно могут ставиться все мысленные опыты через один, через два и т. д. Последова­тельный принцип заключается в том, что вначале ставятся два-три опыта, анализируются результаты и принимается решение о постановке новых опытов. Выбор стратегий определяется стоимостью опытов, их длительностью и ус­ловиями экспериментирования.

Представьте себе задачу, в которой опыт длится не­сколько месяцев, но одновременно можно поставить довольно большое число опытов. При последовательной стра­тегии реализация мысленных опытов надолго затягивается. Выгоднее реализовать сразу все намеченные опыты. Это характерно для сельскохозяйственных, биологических, металлургических задач и т.д.

Преимущество одновременной реализации опытов в том, что эта стратегия исключает временной дрейф.

Когда опыты быстры и дешевы, эта стратегия вполне пригодна. А если опыты дороги, приходится пользоваться последовательной стратегией, так как минимизация числа опытов приобретает большую актуальность.

Имеется несколько вариантов последовательной стра­тегии. Можно реализовать опыты по одному и после каждого анализировать результаты. Другой путь – ставятся одно­временно два-три опыта и затем принимаются решения. При незначительном изменении параметра оптимизации (по­верхность пологая) следующим реализуется далеко отстоя­щий опыт, при сильном (поверхность крутая) – близ­лежащий.

Иногда пользуются методом «ножниц»: реализуются два крайних мысленных опыта, а затем прощупывается про­странство внутри этого интервала. Минимальное число опытов – три, так как оптимум необходимо захватить «в вилку». Два опыта могут оказаться достаточными, когда координаты оптимума близки к координатам опытов исходного плана или же когда попытка продвинуться по неадекватной модели оказывается неудачной.

Крутое восхождение может считаться эффективным, если хотя бы один из реализованных опытов даст лучший результат по сравнению с наилучшим опытом серии.

Остановимся на некоторых особенностях реализации опытов крутого восхождения.

Рассмотрим следующую ситуацию. При эффективном крутом нисхождении достигается граница области опреде­ления одного из факторов. По этому фактору дальше дви­гаться нельзя. Возможны два решения: зафиксировать значение этого фактора и дальше двигаться по остальным или остановиться и поставить новую серию опытов линей­ного приближения. На практике чаще предпочитают пер­вое решение. В этом случае нужно продолжить расчет мысленных опытов и выбрать стратегию их реализации.

Особого рассмотрения заслуживает постановка повтор­ных опытов. Чаще всего повторные опыты не ставятся, а дублируется только наилучший результат. Будет, конечно, не хуже, если ставить параллельные опыты во всех точках.

Иногда приходится считаться с возможностью вре­менного дрейфа. Ведь между исходной серией опытов и движением по градиенту может пройти значитель­ное время. Здесь можно рекомендовать систематическое повторение нулевых точек исходного плана, рандомизированных с точками крутого восхождения. Это дает воз­можность проверить гипотезу о наличии дрейфа.

В соответствии с шаговым принципом «ползания» по поверхности отклика крутое восхождение может осущест­вляться многократно, пока не будет достигнута почти стационарная область.

 

далее >>


Сайт управляется системой uCoz