Крутое восхождение по поверхности отклика
Движение по градиенту
Наиболее короткий путь к оптимуму – направление градиента функции отклика. Градиент непрерывной однозначной функции есть вектор
,
где – обозначение градиента, – частная производная функции по i-му фактору, i, j, k – единичные векторы в направлении координатных осей.
Следовательно, составляющие градиента суть частные производные функции отклика, оценками которых являются, коэффициенты регрессии.
Изменяя независимые переменные пропорционально величинам коэффициентов регрессии, мы будем двигаться в направлении градиента функции отклика по самому крутому пути. Поэтому процедура движения к почти стационарной области называется крутым восхождением.
Величины составляющих градиента определяются формой поверхности отклика и теми решениями, которые были приняты при выборе параметра оптимизации, нулевой точки и интервалов варьирования. Знак составляющих градиента зависит только от формы поверхности отклика и положения нулевой точки.
Расчет крутого восхождения
Возникает вопрос: а как выбрать шаг движения по градиенту? Это еще один этап, для которого не существует формализованного решения. Небольшой шаг потребует значительного числа опытов при движении к оптимуму, большой шаг увеличивает вероятность проскока области оптимума. Во всяком случае, аналогично выбору интервалов варьирования, нижняя граница задается возможностью фиксирования двух соседних опытов, а верхняя областью определения фактора. Для облегчения работы шаги обычно округляют.
На расчет градиента не оказывает влияние b0. Для качественных факторов на двух уровнях либо фиксируется лучший уровень, либо градиент реализуется дважды для каждого уровня в отдельности. Незначимые факторы стабилизируются на любом уровне в интервале ±1. Если нет специальных соображений, то выбирают нулевой уровень. Если же по экономическим соображениям, например, выгодно поддерживать нижний уровень, то выбирают его. В движении по градиенту эти факторы не участвуют.
Таким образом, расчет сводится к тому, чтобы выбрать шаг движения по одному из факторов и пропорционально произведениям коэффициентов регрессии на интервалы варьирования рассчитать шаги по другим факторам.
Остались не рассмотренными два момента: как влияют на крутое восхождение соотношения численных значений коэффициентов регрессии и почему движение по градиенту начинается из нулевой точки.
Представим себе, что в адекватном линейном уравнении значим только один коэффициент. Тогда в движении по градиенту будет участвовать только один фактор. Многофакторная задача выродится в однофакторную. А это менее эффективно. Рассмотренный случай является крайним, но в практике довольно часто b-коэффициенты существенно различаются между собой, оставаясь значимыми.
Функция, величины коэффициентов которой различаются не существенно, называется симметричной относительно коэффициентов. Движение по градиенту для симметричной функции наиболее эффективно. Удачным выбором интервалов варьирования можно сделать симметричной любую линейную функцию для значимых факторов.
На первом этапе планирования не всегда удается получить симметричную функцию. Если функция резко асимметрична (коэффициенты различаются на порядок), то выгоднее вновь поставить эксперимент, изменив интервалы варьирования, а не двигаться по градиенту.
Реализация мысленных опытов
Рассчитав составляющие градиента, мы получили условия мысленных опытов. Число мысленных опытов зависит от задачи. Ограничением сверху служит граница области определения хотя бы по одному из факторов. Иногда по технологическим соображениям нет смысла определять условия многих опытов. Обычно рассчитывается 5–10 мысленных опытов.
Как реализовать мысленные опыты? Нужно ли ставить все опыты подряд или только некоторые из них? С какого опыта начинать? Если модель адекватна, то начинают реализацию с тех опытов, условия которых выходят за область эксперимента хотя бы по одному из факторов. Для неадекватной модели часто 1–2 опыта выполняют в области эксперимента.
Условия мысленных опытов следует тщательно обдумать и убедиться, что нет затруднений в их реализации. Если что-то не ладится, можно изменить шаг и рассчитать мысленные опыты заново.
Существует две принципиально различные стратегии реализации мысленных опытов. Все намеченные к реализации опыты ставятся одновременно либо последовательно по некоторой программе. Одновременно могут ставиться все мысленные опыты через один, через два и т. д. Последовательный принцип заключается в том, что вначале ставятся два-три опыта, анализируются результаты и принимается решение о постановке новых опытов. Выбор стратегий определяется стоимостью опытов, их длительностью и условиями экспериментирования.
Представьте себе задачу, в которой опыт длится несколько месяцев, но одновременно можно поставить довольно большое число опытов. При последовательной стратегии реализация мысленных опытов надолго затягивается. Выгоднее реализовать сразу все намеченные опыты. Это характерно для сельскохозяйственных, биологических, металлургических задач и т.д.
Преимущество одновременной реализации опытов в том, что эта стратегия исключает временной дрейф.
Когда опыты быстры и дешевы, эта стратегия вполне пригодна. А если опыты дороги, приходится пользоваться последовательной стратегией, так как минимизация числа опытов приобретает большую актуальность.
Имеется несколько вариантов последовательной стратегии. Можно реализовать опыты по одному и после каждого анализировать результаты. Другой путь – ставятся одновременно два-три опыта и затем принимаются решения. При незначительном изменении параметра оптимизации (поверхность пологая) следующим реализуется далеко отстоящий опыт, при сильном (поверхность крутая) – близлежащий.
Иногда пользуются методом «ножниц»: реализуются два крайних мысленных опыта, а затем прощупывается пространство внутри этого интервала. Минимальное число опытов – три, так как оптимум необходимо захватить «в вилку». Два опыта могут оказаться достаточными, когда координаты оптимума близки к координатам опытов исходного плана или же когда попытка продвинуться по неадекватной модели оказывается неудачной.
Крутое восхождение может считаться эффективным, если хотя бы один из реализованных опытов даст лучший результат по сравнению с наилучшим опытом серии.
Остановимся на некоторых особенностях реализации опытов крутого восхождения.
Рассмотрим следующую ситуацию. При эффективном крутом нисхождении достигается граница области определения одного из факторов. По этому фактору дальше двигаться нельзя. Возможны два решения: зафиксировать значение этого фактора и дальше двигаться по остальным или остановиться и поставить новую серию опытов линейного приближения. На практике чаще предпочитают первое решение. В этом случае нужно продолжить расчет мысленных опытов и выбрать стратегию их реализации.
Особого рассмотрения заслуживает постановка повторных опытов. Чаще всего повторные опыты не ставятся, а дублируется только наилучший результат. Будет, конечно, не хуже, если ставить параллельные опыты во всех точках.
Иногда приходится считаться с возможностью временного дрейфа. Ведь между исходной серией опытов и движением по градиенту может пройти значительное время. Здесь можно рекомендовать систематическое повторение нулевых точек исходного плана, рандомизированных с точками крутого восхождения. Это дает возможность проверить гипотезу о наличии дрейфа.
В соответствии с шаговым принципом «ползания» по поверхности отклика крутое восхождение может осуществляться многократно, пока не будет достигнута почти стационарная область.