Главная

Оглавление

Ограничения

Основные определения

Объект исследования

Параметр оптимизации

Виды параметров оптимизации

Требования к параметру оптимизации

Факторы

Определение фактора

Требования, предъявляемые к факторам при планировании эксперимента

Требования к совокупности факторов

Выбор модели

Шаговый принцип

Как выбрать модель?

Полиномиальные модели

Полный факторный эксперимент

Принятие решений перед планированием эксперимента

Выбор основного уровня

Выбор интервалов варьирования.

Полный факторный эксперимент

Свойства полного факторного эксперимента типа 2k

Полный факторный эксперимент и математическая модель

Дробный факторный эксперимент

Минимизация числа опытов

Дробная реплика

Выбор полуреплик. Генерирующие соотношения и определяющие контрасты..

Выбор 1/4-реплик. Обобщающий определяющий контраст.

Реплики большой дробности

Проведение эксперимента

Ошибки параллельных опытов

Дисперсия параметра оптимизации

Проверка однородности дисперсий

Рандомизация

Разбиение матрицы типа 2k на блоки

Обработка результатов эксперимента

Метод наименьших квадратов

Регрессионный анализ

Проверка адекватности модели

Проверка значимости коэффициентов

Принятие решений после построения модели

Интерпретация результатов

Принятие решений после построения модели процесса

Построение интерполяционной формулы, линейная модель неадекватна

Крутое восхождение по поверхности отклика

Движение по градиенту

Расчет крутого восхождения

Реализация мысленных опытов

Принятие решений после крутого восхождения

Крутое восхождение эффективно

Крутое восхождение неэффективно


Дополнительные материалы

Глава 1

Глава 2

Глава 3

Глава 4

 

Обработка результатов эксперимента

 

Тщательное, скрупулезное выполнение эксперимента, несомненно, является главным условием успеха исследо­вания. Это общее правило, и планирование эксперимента не относится к исключениям.

Однако нам не безразлично, как обработать полученные данные. Мы хотим навлечь из них всю информацию и сде­лать соответствующие выводы. Как всегда, мы находимся между Сциллой и Харибдой. С одной стороны, не извлечь из эксперимента все, что из него следует,– значит прене­бречь нелегким трудом экспериментатора. С другой стороны, сделать утверждения, не следующие из эксперимента, – значит создавать иллюзии, заниматься самообманом.

Статистические методы обработки результатов позво­ляют нам не перейти разумной меры риска.

Метод наименьших квадратов

 

Нач­нем с простого случая: один фактор, линейная модель. Интересующая нас функция отклика (которую мы будем также называть уравнением регрессии) имеет вид

Это хорошо известное уравнение прямой линии. Наша цель – вычисление неизвестных коэффициентов b0 и b1. Мы провели эксперимент, чтобы использовать при вычис­лениях его результаты. Как это сделать наилучшим обра­зом?

Если бы все экспериментальные точки лежали строго на прямой линии, то для каждой из них было бы справед­ливо равенство

,

где i = 1, 2, ..., N – номер опыта. Тогда не было бы никакой проблемы. На практике это равенство нарушается и вместо него приходится писать

,

где  – разность между экспериментальным и вычис­ленным по уравнению регрессии значениями y в iэкспе­риментальной точке. Эту величину иногда невязкой.

Мы хотим найти такие коэффициенты регрессии, при которых невязки будут минимальны. Это требо­вание можно записать по-разному. В зависимости от этого мы будем получать разные оценки коэффициентов. Вот одна из возможных записей

,

которая приводит к методу наименьших квадратов.

Когда мы ставим эксперимент, то обычно стремимся провести больше (во всяком случае не меньше) опытов, чем число неизвестных коэффициентов. Поэтому система линейных уравнений

оказывается переопределенной и часто противоречивой (т. е. она может иметь бесконечно много решений или может не иметь решений). Переопределенность возникает, когда число уравнений больше числа неизвестных; противоре­чивость – когда некоторые из уравнений несовместимы друг с другом.

Только если все экспериментальные точки лежат па прямой, то система становится определенной и имеет единственное решение.

МНК обладает тем замечательным свойством, что он делает определенной любую, произвольную систему уравнений. Он делает число уравнений равным чис­лу неизвестных коэффициентов.

Для определения двух неизвестных коэф­фициентов требуется два уравнения. Давайте попробуем их получить.

 

Мини­мум некоторой функции, если он существует, достигается при одновременном равенстве нулю частных производных по всей неизвестным, т. е.

.

В явном виде это запишется как

,

.

Окончательные формулы для вычисления коэффи­циентов регрессии, которые удобно находить с помощью определителей, имеют вид

,

.

 

Величина  называется остаточной суммой квадратов ( – значение параметра оптимизации, вычисленное из уравнения регрессии). МНК гарантирует, что эта величина минимально возможная.

Обобщение на многофакторный случай не связано с какими-либо принципиальными трудностями.

Воспользуемся тем, что матрицы планирования ортогональны и нормированы, т.е.

       и         

Для любого числа факторов коэффициенты будут вычисляться по формуле

В этой формуле j = 0, 1, 2 ..., k номер фактора. Ноль записан для вычисления b0.

Так как каждый фактор (кроме x0) варьируется на двух уровнях +1 и –1, то вычисления сводятся к приписыванию столбцу y знаков соответствующего фактору столбца и алгебраическому сложению полученных значений. Де­ление результата на число опытов в матрице планирова­ния дает искомый коэффициент.

Регрессионный анализ

 

До сих пор мы пользовались МНК как вычисли­тельным приемом. Нам нигде не приходилось вспоминать о статистике. Но, как только мы начинаем про­верять какие-либо гипотезы о пригодности модели или о значимости коэффициентов, приходится вспоминать о статистике. И с этого момента МНК превращается в рег­рессионный анализ.

А регрессионный анализ как всякий статистический метод, применим при определенных предположениях, постулатах.

Первый постулат. Параметр оптимизации y есть случайная величина с нормальным законом распределения. Дисперсия воспроизводимости – одна из харак­теристик этого закона распределения.

В данном случае, как и по отношению к любым другим постулатам, нас интересуют два вопроса: как проверить его выполнимость и к чему приводят его нарушения?

При наличии большого экспериментального материала (десятки параллельных опытов) гипотезу о нормальном рас­пределении можно проверить стандартными статистичес­кими тестами (например, – критерием). К сожалению, экспериментатор редко располагает такими данными, поэтому приходится принимать этот постулат на веру.

При нарушении нормальности мы лишаемся возмож­ности установления вероятностей, с которыми справедливы те или иные высказывания. В этом таится большая опас­ность. Мы рискуем загипнотизировать себя численными оценками и вероятностями, за которыми ничего не стоит. Вот почему надо очень внима­тельно относиться к возможным нарушениям предпосылок.

Второй постулат. Дисперсия y не зависит от абсо­лютной величины y. Выполнимость этого постулата проверяется с помощью критериев однородности дисперсий в разных точках фак­торного пространства. Нарушение этого постулата недо­пустимо.

Всегда существует та­кое преобразование y, которое делает дисперсии одно­родными. Увы, его не всегда легко найти. Довольно часто помогает логарифмическое преобразование, с которого обычно начинают поиски.

Третий постулат. Значения факторов суть неслу­чайные величины. Это несколько неожиданное утверждение практически означает, что установление каждого фактора на заданный уровень и его поддержание существенно точнее, чем сшибка воспроизводимости.

Нарушение этого постулата приводит к трудностям при реализации матрицы планирования. Поэтому оно обычно легко обнаруживается экспериментатором.

Существует еще четвертый постулат, налагающий ог­раничения на взаимосвязь между значениями факторов. У Нас он выполняется автоматически в силу ортогональ­ности матрицы планирования.

Проверка адекватности модели

 

Первый вопрос, который нас интересует после вычис­ления коэффициентов модели, это проверка ее пригод­ности. Мы будем называть такую проверку провер­кой адекватности модели.

Для характеристики среднего разброса относительно линии регрессии вполне подходит остаточная сумма квад­ратов. Неудобство состоит в том, что она зависит от чис­ла коэффициентов в уравнении: введите столько коэф­фициентов, сколько вы провели независимых опытов, и получите остаточную сумму, равную нулю. Поэтому предпочитают относить ее на один «свободный» опыт. Число таких опытов называется числом степеней свобо­ды f.

Числом степеней свободы в статистике называется разность между числом опытов и числом коэффициентов (констант), которые уже вычислены по результатам этих опытов независимо друг от друга.

Остаточная сумма квадратов, деленная на число сте­пеней свободы, называется остаточной диспер­сией, или дисперсией адекватности

.

В статистике разработан критерий, который очень удобен для проверки гипотезы об адекватности модели. Он называется F-критерием Фишера и определяется сле­дующей формулой:

.

 – это дисперсия воспроизводимости со своим числом степеней свободы.

Удобство использования критерия Фишера состоит в том, что проверку гипотезы можно свести к сравнению с табличным значением.

Если рассчитанное значение F-критерия не превы­шает табличного, то, с соответствующей доверительной вероятностью, модель можно считать адекватной. При превышении табличного значения эту приятную гипотезу приходится отвергать.

Этот способ расчета дисперсии адекватности, подходит, если опыты в матрице планирования не дублируются, а информация о дисперсии воспроизводимости извлекается из параллельных опытов в нулевой точке или из предварительных экспериментов.

Важны два случая: 1) опыты во всех точках плана дублируются одинаковое число раз (равномерное дублирование), 2) число параллельных опытов не одинаково (неравномерное дублирование).

В первом случае дисперсию адекватности нужно умножать на n, где n – число повторных опытов

 .

Такое видоизменение формулы вполне естественно. Чем больше число параллельных опытов, тем с большей достоверностью оцени­ваются средние значения. Поэтому требования к различиям между экспериментальными и расчетными значениями становятся более жесткими, что отражается в увеличении F-критерия.

Во втором случае, когда приходится иметь дело с неравномер­ным дублированием, положение усложняется. Даже когда экспе­риментатор задумал провести равное число параллельных опытов, часто не удается по тем или иным причинам все их реализовать. Кроме того, иногда приходится отбрасывать отдельные опыты как выпадающие наблюдения.

При неравномерном дублировании нарушается ортогональность матрицы планирования и, как следствие, изменяются расчетные фор­мулы для коэффициентов регрессии и их ошибок, а также для дис­персии адекватности.

Для дисперсии адекватности можно записать общую формулу

,

где N – число различных опытов (число строк матрицы);

ni – число параллельных опытов в i-й строке матрицы;

 – среднее арифметическое из ni параллельных опытов;

 – предсказанное по уравнению значение в этом опыте.

Смысл этой формулы очень прост: различию между эксперимен­тальным и расчетным значением придается тем больший вес, чем больше число повторных опытов.

Для b-коэффициентов нельзя записать универсальную рас­четную формулу. Все зависит от того, какой был план и как дубли­ровались опыты. Всякий раз приходится делать специальные рас­четы, пользуясь методом наименьших квадратов.

Проверка значимости коэффициентов

 

Проверка значимости каждого коэффициента прово­дится независимо.

Ее можно осуществлять двумя равноценными спосо­бами: проверкой по t-критерию Стьюдента или построе­нием доверительного интервала. При использовании пол­ного факторного эксперимента или регулярных дробных реплик доверительные интервалы для всех коэффициен­тов (в том числе и эффектов взаимодействия) равны друг другу.

Прежде всего, надо найти дисперсию коэф­фициента регрессии . Она определяется в нашем по формуле

Из формулы видно, что дисперсии всех коэффициентов равны друг другу, так как они зависят только от ошибки опыта и числа опытов.

Теперь легко построить доверительный интервал

Здесь t табличное значение критерия Стьюдента при числе степеней свободы, с которыми определялась , и выбранном уровне значимости (обычно 0,05);  – квадратичная ошибка коэффициента регрессии.

Коэффициент значим, если его абсолютная величина больше доверительного интервала.

 

далее >>


Сайт управляется системой uCoz