Проведение эксперимента
Познакомимся с вычислением ошибки опыта, или, как ее часто называют, ошибки воспроизводимости.
Ошибки параллельных опытов
Каждый эксперимент содержит элемент неопределенности вследствие ограниченности экспериментального материала. Постановка повторных (или параллельных) опытов не дает полностью совпадающих результатов, потому что всегда существует ошибка опыта (ошибка воспроизводимости). Эту ошибку и нужно оценить по параллельным опытам. Для этого опыт воспроизводится по возможности в одинаковых условиях несколько раз и затем берется среднее арифметическое всех результатов. Среднее арифметическое равно сумме всех п отдельных результатов, деленной на количество параллельных опытов п
.
Отклонение результата любого опыта от среднего арифметического можно представить как разность где – результат отдельного опыта. Наличие отклонения свидетельствует об изменчивости, вариации значений повторных опытов. Для измерения этой изменчивости чаще всего используют дисперсию. Дисперсией называется среднее значение квадрата отклонений величины от ее среднего значения. Дисперсия обозначается s2 и выражается формулой
.
где (n – 1) – число степеней свободы, равное количеству опытов минус единица. Одна степень свободы использована для вычисления среднего.
Корень квадратный из дисперсии, взятый с положительным знаком, называется средним квадратическим отклонением, стандартом или квадратичной ошибкой
Стандарт имеет размерность той величины, для которой он вычислен. Дисперсия и стандарт – это меры рассеяния, изменчивости. Чем больше дисперсия и стандарт, тем больше рассеяны значения параллельных опытов около среднего значения.
Ошибка опыта являемся суммарной величиной, результатом многих ошибок: ошибок измерений факторов, ошибок измерений параметра оптимизации и др. Каждую из этих ошибок можно, в свою очередь, разделить на составляющие.
Вопрос о классификации ошибок довольно сложный и вызывает много дискуссий. В качестве примера одной из возможных схем классификации мы приведем схему из книги Ю. В. Кельница «Теория ошибок измерений» (М., изд-во «Недра», 1967).
Все ошибки принято разделять на два класса: систематические и случайные.
Систематические ошибки порождаются причинами, действующими регулярно, в определенном направлении. Чаще всего эти ошибки можно изучить и определить количественно.
Систематические ошибки находят, калибруя измерительные приборы и сопоставляя опытные данные с изменяющимися внешними условиями (например, при градуировке термопары по реперным точкам, при сравнении с эталонным прибором).
Если систематические ошибки вызываются внешними условиями (переменной температуры, сырья и т. д.), следует компенсировать их влияние. Как это делать, будет показано ниже.
Случайными ошибками называются те, которые появляются нерегулярно, причины возникновения которых неизвестны и которые невозможно учесть заранее.
Систематические и случайные ошибки состоят из множества элементарных ошибок. Для того, чтобы исключать инструментальные ошибки, следует проверять приборы перед опытом, иногда в течение опыта и обязательно после опыта. Ошибки при проведении самого опыта возникают вследствие неравномерного нагрева реакционной среды, разного способа перемешивания и т.п. При повторении опытов такие ошибки могут вызвать большой разброс экспериментальных результатов.
Очень важно исключить из экспериментальных данных грубые ошибки, так называемый брак при повторных опытах. Для отброса ошибочных опытов существуют правила. Для определения брака используют, например, критерий Стьюдента
.
Значение t берут из таблицы t-распределения Стьюдента. Опыт считается бракованным, если экспериментальное значение критерия t по модулю больше табличного значения.
Дисперсия параметра оптимизации
Дисперсия всего эксперимента получается в результате усреднения дисперсий всех опытов. По терминологии, принятой в планировании эксперимента, речь идет о подсчете дисперсии параметра оптимизации или, что то же самое, дисперсии воспроизводимости эксперимента
При подсчете дисперсии параметра оптимизации квадрат разности между значением yq в каждом опыте и средним значением из n повторных наблюдений y нужно просуммировать по числу опытов в матрице N, а затем разделить на N(n - 1):
,
Где i = 1, 2, …, N; q = 1, 2, …, n.
Такой формулой можно пользоваться в случаях, когда число повторных опытов одинаково во всей матрице.
Дисперсию воспроизводимости проще всего рассчитывать, когда соблюдается равенство числа повторных опытов во всех экспериментальных точках. На практике весьма часто приходится сталкиваться со случаями, когда число повторных опытов различно. Это происходит вследствие отброса грубых наблюдений, неуверенности экспериментатора в правильности некоторых результатов (в таких случаях возникает желание еще и еще раз повторить опыт) и т.п.
Тогда при усреднении дисперсий приходится пользоваться средним взвешенным значением дисперсий, взятым с учетом числа степеней свободы
,
где
– дисперсия i-го опыта;
– число степеней свободы i-м опыте, равное числу параллельных опытов ni минус 1.
Число степеней свободы средней дисперсии принимается равным сумме чисел степеней свободы дисперсий, из которых она вычислена.
Случай с неравным числом наблюдений, который мы рассмотрели выше, связан с нарушением ортогональности матрицы. Поэтому здесь нельзя использовать расчетные формулы для коэффициентов, приведенные ранее. Этот вопрос будет рассмотрен ниже.
Экспериментатору не следует забывать о проверке однородности дисперсий, неоднородные дисперсии усреднять нельзя. Прежде чем пользоваться приведёнными выше формулами, нужно убедиться в однородности суммируемых дисперсий.
Проверка однородности дисперсий
Проверка однородности дисперсий производится с помощью различных статистических критериев. Простейшим из них является критерий Фишера, предназначенный для сравнения двух дисперсий. Критерий Фишера (F-критерий) представляет собою отношение большей дисперсии к меньшей. Полученная величина сравнивается с табличной величиной F-критерия.
Если полученное значение дисперсионного отношения больше приведенного в таблице для соответствующих степеней свободы и выбранного уровня значимости, это означает, что дисперсии значимо отличаются друг от друга, т. е. что они неоднородны.
Если сравниваемое количество дисперсий больше двух и одна дисперсия значительно превышает остальные, можно воспользоваться критерием Кохрена. Этот критерий пригоден для случаев, когда во всех точках имеется одинаковое число повторных опытов. При этом подсчитывается дисперсия в каждой горизонтальной строке матрицы
,
а затем из всех дисперсий находится наибольшая которая делится на сумму всех дисперсий. Критерий Кохрена – это отношение максимальной дисперсии к сумме всех дисперсий
.
Гипотеза об однородности дисперсий подтверждается, если экспериментальное значение критерия Кохрена не превышает табличного значения. Тогда можно усреднять дисперсии и пользоваться формулой
.
Если возникает предположение о наличии неоднородности дисперсий для случая, когда число повторных опытов неодинаково во всех точках, можно воспользоваться критерием Бартлета. По уже знакомой формуле подсчитывается дисперсия воспроизводимости
.
Далее находится величина
,
где
.
Здесь число степеней свободы равно N–1, где N – число сравниваемых дисперсий. При планировании эксперимента типа 2k это число равно числу опытов в матрице.
Бартлет показал, что величина приближенно подчиняется – распределению с (N–1) степенями свободы. Значимость критерия Бартлета проверяется обычным способом.
Критерий Бартлета базируется на нормальном распределении. Если имеются отклонения от нормального распределения, то проверка неоднородности дисперсий может привести к ошибочным результатам.
Можно предложить использование F-критерия даже в тех случаях, когда число дисперсий больше двух. Делается это следующим образом. Из всех дисперсий выделяются наибольшая и наименьшая. По F-критерию производится проверка, значимо ли они различаются между собой. Ясно, что если наибольшая и наименьшая дисперсии не отличаются значимо, то дисперсии, имеющие промежуточные значения, также не могут значимо отличаться друг от друга. Тогда всю группу дисперсий можно считать принадлежащей к единой совокупности. В таких случаях нет надобности применять критерий Бартлета.
Рандомизация
Чтобы исключить влияние систематических ошибок, вызванных внешними условиями (переменой температуры, сырья, лаборанта и т. д.), рекомендуется случайная последовательность при постановке опытов, запланированных матрицей. Опыты необходимо рандомизировать во времени. Термин «рандомизация» происходит от английского слова random – случайный.
Разбиение матрицы типа 2k на блоки
Если экспериментатор располагает сведениями о предстоящих изменениях внешней среды, сырья, аппаратуры и т. п., то целесообразно планировать эксперимент таким образом, чтобы эффект влияния внешних условий был смешан с определенным взаимодействием, которое не жалко потерять. Так, при наличии двух партий сырья матрицу 23 можно разбить на два блока таким образом, чтобы эффект сырья сказался на величине трехфакторного взаимодействия. Тогда все линейные коэффициенты и парные взаимодействия будут освобождены от влияния неоднородности сырья.
№ блока |
x0 |
x1 |
x2 |
x3 |
x1x2 |
x1x3 |
x2x3 |
x1x2x3 |
y |
1 |
+ |
– |
– |
+ |
+ |
– |
– |
+ |
|
+ |
+ |
– |
– |
– |
– |
+ |
+ |
|
|
+ |
– |
+ |
– |
– |
+ |
– |
+ |
|
|
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
|
|
2 |
+ |
– |
– |
– |
+ |
+ |
+ |
– |
y5 |
+ |
+ |
– |
+ |
– |
+ |
– |
– |
y6 |
|
+ |
– |
+ |
+ |
– |
– |
+ |
– |
y7 |
|
+ |
+ |
+ |
– |
+ |
– |
– |
– |
y8 |
В этой матрице при составлении блока 1 отобраны все строки, для которых , а при составления блока 2 – все строки, для которых . Различие в сырье можно рассматривать как новый фактор . Тогда матрица 23, разбитая на два блока, представляет собой полуреплику 24-1 с определяющим контрастом .
, ;
, ;
, ;
, ;
, ;
, ;
, ;
, ;
Эффект сырья отразился на подсчете свободного члена b0 и эффекта взаимодействия второго порядка b123.
Аналогично можно разбить на два блока любой эксперимент типа 23. Главное – правильно выбрать взаимодействие, которым можно безболезненно пожертвовать. При отсутствии априорных сведений выбирают взаимодействие самого высокого порядка: x1x2x3 для 23, x1x2x3х4 для 24, x1x2x3x4x5 25 и т. д. Но если экспериментатору известно, что одно из парных взаимодействий лишено, например, физико-химического смысла, то можно пожертвовать парным взаимодействием.
Матрицу типа 2k можно разбить на количество блоков 2n (n – степень двойки) при . Так, матрица 23 разбивается на два блока по четыре опыта в каждом и на четыре блока по два опыта в каждом. Матрица 24 – на два блока по 8 опытов в каждом, на четыре блока по четыре опыта и на восемь блоков по два опыта и т.д.