Главная

Оглавление

Ограничения

Основные определения

Объект исследования

Параметр оптимизации

Виды параметров оптимизации

Требования к параметру оптимизации

Факторы

Определение фактора

Требования, предъявляемые к факторам при планировании эксперимента

Требования к совокупности факторов

Выбор модели

Шаговый принцип

Как выбрать модель?

Полиномиальные модели

Полный факторный эксперимент

Принятие решений перед планированием эксперимента

Выбор основного уровня

Выбор интервалов варьирования.

Полный факторный эксперимент

Свойства полного факторного эксперимента типа 2k

Полный факторный эксперимент и математическая модель

Дробный факторный эксперимент

Минимизация числа опытов

Дробная реплика

Выбор полуреплик. Генерирующие соотношения и определяющие контрасты..

Выбор 1/4-реплик. Обобщающий определяющий контраст.

Реплики большой дробности

Проведение эксперимента

Ошибки параллельных опытов

Дисперсия параметра оптимизации

Проверка однородности дисперсий

Рандомизация

Разбиение матрицы типа 2k на блоки

Обработка результатов эксперимента

Метод наименьших квадратов

Регрессионный анализ

Проверка адекватности модели

Проверка значимости коэффициентов

Принятие решений после построения модели

Интерпретация результатов

Принятие решений после построения модели процесса

Построение интерполяционной формулы, линейная модель неадекватна

Крутое восхождение по поверхности отклика

Движение по градиенту

Расчет крутого восхождения

Реализация мысленных опытов

Принятие решений после крутого восхождения

Крутое восхождение эффективно

Крутое восхождение неэффективно


Дополнительные материалы

Глава 1

Глава 2

Глава 3

Глава 4

 

Дробный факторный эксперимент

 

Количество опытов в полном факторном эксперименте значительно превосходит число определяемых коэффициентов линейной модели. Другими словами, полный факторный эксперимент обладает большой избыточностью опытов. Было бы заманчивым сократить их число за счет той информации, которая не очень существенна при построении линейных моделей. При этом нужно стремиться, чтобы матрица планирования не лишилась своих оптимальных свойств. Сделать это не так просто, но все же возможно. Итак, начнем поиск путей минимизации опытов.

Минимизация числа опытов

Начнем с самого простого – полного факторного эксперимента 2k. Запишем еще раз матрицу планирования

 

№ опыта

x0

x1

x2

(x3)

x1x2

y

1

+

+

y1

2

+

+

y2

3

+

+

y3

4

+

+

+

+

y4

 

Пользуясь таким планированием, можно вычислить четыре коэффициента и представить результаты эксперт в виде неполного квадратного уравнения

Если имеются основания считать, что в выбранных интервалах варьирования процесс может быть описан ли­нейной моделью, то достаточно определить три коэффи­циента: b0, b1 и b2. Остается одна степень свободы. Упот­ребим ее для минимизации числа опытов. При линейном приближении  и вектор-столбец x1x2 можно использовать для нового фактора x3. Поставим этот фактор в скобках над взаимодействием x1x2 и посмотрим, каковы будут оценки коэффициентов. Здесь уже не будет тех раздельных оценок, которые мы имели в полном факторном эксперименте 2k. Оценки смешаются следующим образом:

            ,             ,             .

Но нас это не должно огорчать. Ведь мы постулируем линейную модель, и, следовательно, все парные взаимодей­ствия незначимы. Главное, мы нашли средство минимизировать число опытов: вместо 8 опытов для изучения трех факторов оказывается можно поставить четыре! При этом матрица планирования не теряет своих оптимальных свойств (ортогональность, ротатабельность и т.п.). Найденное правило можно сформулировать так: чтобы сократить число опытов, нужно новому фактору присвоить вектор-столбец матрицы, принадлежащий взаимодействию, которым можно пренеб­речь. Тогда значение нового фактора в условиях опытов определяется знаками этого столбца.

Дробная реплика

 

Поставив четыре опыта для оценки влияния трех факторов, мы воспользовались половиной полного факторного эксперимента 23 или «полурепликой». Если бы мы х3 приравняли к –x1x2, то получили бы вторую по­ловину матрицы 23. В этом случае , , . При реализации обеих полуреп­лик можно получить раздельные оценки для линейных эффектов и эффектов взаимодействия, как и в полном факторном эксперименте 23. Объединение этих двух полуреплик и есть полный факторный эксперимент 23. Матрица из восьми опытов для четырех факторного планирования будет полурепликой от полного фактор­ного эксперимента 24, а для пятифакторного планиро­вания – четверть-репликой от 25. В последнем случае два линейных эффекта приравниваются к эффектам взаимо­действия. Для обозначения дробных реплик, в которых p линейных эффектов приравнены к эффектам взаимо­действия, удобно пользоваться условным обозначением 2k-p. Так, полуреплика от 23 запишется в виде 23-1 а четвертьреплика от 25 – в виде 25-2.

Выбор полуреплик. Генерирующие соотношения и определяющие контрасты

При построении полуреплики 23-1 существует всего две возможности: приравнять х3 к +x1x2 или к –x1x2. Поэтому есть только две полуреплики 23-1.

 

 

№ опыта

x1

x2

x3

x1x2x3

 1

+

+

+

+

2

+

+

3

+

+

4

+

+

№ опыта

x1

x2

x3

x1x2x3

1

+

+

2

3

+

+

4

+

+

 

Для произведения трех столбцов первой матрицы выполняется соотношение: , а для второй матрицы: .

Символическое обозначение произведения столбцов, равного +1 или 1, называется определяющим контрастом. Контраст помогает определять сме­шанные эффекты. Для того чтобы определить, какой эффект смешан с данным, нужно помножить обе части определяющего контраста на столбец, соответствующий данному эффекту. Так, если , то для x1 имеем

,

так как всегда . Для x2 находим

,

для x3

.

Это значит, что коэффициенты линейного уравнения будут оценками

,

,

.

Соотношение, показывающее, с каким из эффектов смешан данный эффект, называется генерирующим соотношением.

Полуреплики, в которых основные эффекты смешаны с двухфакторными взаимодействиями, носят название планов с разрешающей способностью III (по наибольшему числу факторов в определяющем контрасте).Такие планы принято обозначать: .

При выборе полуреплики 24-1 возможны восемь реше­ний:

 

1.      ,

2.      ,

3.      ,

4.      ,

5.      ,

6.      ,

7.      ,

8.      .

 

Разрешающая способность этих полуреплик различна. Так, реплики 1–6 имеют по три фактора в определяющем контрасте, а 7–8 по четыре. Реплики 7 и 8 имеют максимальную разрешающую способность и называются главными. Разрешающая способность задается системой смешивания данной реплики. Она будет максимальной, если линейные эффекты смешаны с эффектами взаимодействия наибольшего возможного порядка.

При отсутствии априорной информации об эффектах взаимодействия экспериментатор стремится выбрать реплику с наибольшей разрешающей способностью, так как тройные взаимодействия обычно менее важны, чем парные. Если существует информация об эффектах взаимо­действия, то она должна использоваться при выборе реплики.

Реплики, в которых нет ни одного главного эффекта, смешанного с другим главным эффектом или парным взаимо­действием, а все парные взаимодействия смешаны друг с другом, носят название планов с разрешающей способ­ностью IV (по наибольшему числу факторов в определяю­щем контрасте). Они имеют обозначение .

Такие полуреплики называют главными полурепликами, так как они обладают наибольшей разрешающей спо­собностью.

При выборе полуреплики 25-1 в распоряжении экспериментатора имеется множество вариантов.

Так, х5 можно приравнять к одному из 6 парных взаимодействий. В этом случае получим полуреплику с разрешающей способностью III. Очевидно, это будет не лучший выбор полуреплики. Далее, х5 можно приравнять к одному из четырех тройных взаимодействий. Тогда получим план с разрешающей способностью IV, и все линейные эффекты будут смешаны с тройными взаимодействиями. И наконец, полуреплика может быть задана генерирующими соотношениями  или . Определяющими контрастами в этом случае будут.

 и .

Такие реплики носят название планов с разрешаю­щей способностью V и обозначаются .

Полурепликами 26-1 редко пользуются на практике. Ведь полуреплика 26-1 требует 32 опыта, а для экспериментатора выгодны планы 26-2 или 26-3 требую­щие соответственно 16 и 8 опытов. Поэтому с ростом числа факторов возрастает дробность применяемых реплик.

Заметим, что при построении главных полуреплик в определяющий контраст надо включать наибольшее число факторов.

Выбор 1/4-реплик. Обобщающий определяющий контраст.

 

При исследовании влияния пяти факторов можно поставить не 16 опытов, а только 8, т. е. воспользоваться репликой 25-2. Здесь возможны двенадцать решений, если х4 приравнять парному взаимодействию, а х5 – тройному. Допустим, выбран вариант  и . Тогда определяющими контрастами являются  и .

Если перемножить эти определяющие контрасты, то получится третье соотношение, задающее элементы столбца . Чтобы полностью охарактеризовать разрешающую способность реплики, необходимо записать обобщающий определяющий контраст.

.

Система смешивания определяется умножением обобщающего определяющего контраста последовательно на х1, х2, х3 и т.д.

,

,

,

,

,

,

.

Получается довольно сложная система смешивания линейных эффектов с эффектами взаимодействия первого, второго, третьего и четвертого порядков. Если, например, коэффициенты  и  отличаются от нуля, то возникают сомнения, можно ли пренебрегать другими парными взаимодействиями, с которыми смешаны линейные эффекты. Тогда следует поставить вторую серию опытов, выбрав нужным образом другую 1/4-реплику.

При этом можно воспользоваться методом «перевала». Смысл этого метода заключается в том, что вторая чет­верть-реплика получается из первой путем изменения всех знаков матрицы на обратные. Тогда в обобщающей определяющем контрасте тройные произведения имеют знак, противоположный их знаку в первой четверть-репли­ке. Тройные произведения определяют парные взаимодей­ствия в совместных оценках для линейных эффектов. Усредняя результаты обеих четверть-реплик, можно полу­чить линейные эффекты, не смешанные с парными взаимо­действиями.

Реплики большой дробности

 

При выборе 1/8-реплики 26-3 можно воспользоваться вектор-столбцами трех взаимодействий, например, так:

1.      ,               ,                    ;

2.      ,               ,                    ;

3.      ,               ,                    ;

4.      ,               ,                    .

 

Для каждого из этих решений можно сделать шесть перестановок. Итого получается 24 возможности выбора 1/8-реплики. Это при условии, что мы всюду выбираем положительные генерирующие соотношения.

Из четырех приведенных выше решений наименее удачно первое, поскольку все линейные эффекты смешиваются с парными взаимодействиями. Если априори известно, что из всех взаимодействий наиболее существенно х1х2, то нужно выбрать второе решение, если х1х3 – третье, а если х2х3четвертое.

Допустим, мы избрали четвертое решение, предполагая, что из факторов х4, х5, х6 наиболее существенным является х4. Приравняем х4 тройному взаимодействию и запишем генерирующие соотношения

,                 ,                    .

имеем следующие определяющие контрасты:

,                ,                   .

Если попарно перемножить эти определяющие кон­трасты, то получим

,                   ,                   .

Произведение трех определяющих контрастов равно

.

Чтобы полностью охарактеризовать разрешающую спо­собность данной 1/8-реплики, запишем обобщающий опре­деляющий контраст

.

Получается следующая система смешивания (эффекты выше второго порядка опущены):

,

,

,

,

,

.

 

Рассмотрим пример 1/16-реплики от 27.

1/16 часть от полного факторного эксперимента 27 дает возможность сократить число опытов до 8 вместо 128.

Выберем следующие генерирующие соотношения:

,                     ,                    ,                    .

Для них имеем следующие определяющие контрасты:

,                    ,                   ,                   .

Обобщающий определяющий контраст

Такой обобщающий определяющий контраст получен в результате попарного перемножения исходных конт­растов, затем – умножения по три и по четыре.

Если всеми коэффициентами взаимодействия, начиная с тройных, можно пренебречь, то коэффициенты будут совместными оценками:

,

,

,

,

,

,

.

Разрешающая способность такой реплики чрезвы­чайно мала, так как каждый линейный эффект опреде­ляется совместно с тремя парными взаимодействиями. Такой репликой можно пользоваться только в том слу­чае, если все парные взаимодействия равны нулю. В боль­шинстве случаев, начиная исследование процесса, труд­но априорно предсказать, будут эффекты взаимодействия существенны или нет. Поэтому экспериментатор должен наметить план дальнейших опытов для случая, если парные эф­фекты значимы и поиск оптимальных условий будет не­эффективным.

Матрицу планирования для этой реплики можно по­лучить из первой реплики, изменив в ней все знаки на обратные. Такая реплика задается генерирующими соот­ношениями

,                  ,                  ,                  .

В обобщающем определяющем контрасте все тройные произведения оказываются со знаком минус, и поэтому в совместных оценках для линейных эффектов не будет парных взаимодействий со знаком плюс. Усредняя ре­зультаты вычислений для таких двух реплик, можно получить раздельные оценки для всех линейных эффек­тов.

С ростом числа факторов увеличивается дробность реплик и усложняется система смешивания. Предельное число факторов для восьми опытов – семь. В этом случае оценивается восемь коэффициентов линейного уравнения  и число степе­ней свободы равно нулю. При числе факторов от 9 до 15 приходится ставить 16 опытов. План с предельным числом факторов для данного числа опытов и заданной модели называется насыщенным. В этом случае число опытов равно числу оцениваемых коэф­фициентов. Все рекомендации для выбора системы сме­шивания аналогичны приведенным выше. Можно, далее, рассматривать построение дробных планов для числа факторов от 16 до 31 (при этом необходимо ставить 32 опыта), для числа факторов от 32 до 63 (здесь необходи­мы 64 опыта) и т. д.

 

 

далее >>


Сайт управляется системой uCoz